On a non-self adjoint eigenfunction expansion
نویسندگان
چکیده
منابع مشابه
On Eigenfunction Approximations for Typical Non-self-adjoint Schrödinger Operators
We construct efficient approximations for the eigenfunctions of non-selfadjoint Schrödinger operators in one dimension. The same ideas also apply to the study of resonances of self-adjoint Schrödinger operators which have dilation analytic potentials. In spite of the fact that such eigenfunctions can have surprisingly complicated structures with multiple local maxima, we show that a suitable ad...
متن کاملNon-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملNon-self-adjoint Linear Systems
We study iterative methods for solving linear systems of the type arising from two-cyclic discretizations of non-self-adjoint two-dimensional elliptic partial differential equations. A prototype is the convection-diffusion equation. The methods consist of applying one step of cyclic reduction, resulting in a "reduced system" of half the order of the original discrete problem, combined with a re...
متن کاملSome results on non-self-adjoint operators, a survey
This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...
متن کاملOn the computation of spectra and pseudospectra of self-adjoint and non-self-adjoint Schrödinger operators
We consider the long standing open question on whether one can actually compute spectra and pseudospectra of arbitrary (possibly non-self-adjoint) Schrödinger operators.We conclude that the answer is affirmative for “almost all” such operators, meaning that the operators must satisfy rather weak conditions such as the spectrum cannot be empty nor the whole plane. We include algorithms for the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1984
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171284000247